I. Aire d'une figure:
1.Définition: On appelle aire d'une figure fermée le nombre de carrés (de côté 1 unité de longueur) nécessaires pour la remplir complètement.
Cette définition nous permet de déterminer l'aire d'une figure par dénombrement, en comptant le nombre de carrés nécessaires pour remplir complètement la figure:
2. Les unités d'aire:
Comment convertir des unités d'aires ?
II. Formulaire: aire d'un carré, d'un rectangle et d'un triangle rectangle:
Vidéo: exemples ( à venir...): en attendant:
Pour aller plus loin (aire d'un triangle rectangle au brevet):
IV . Aire d'un triangle quelconque :
1) Définition d'une hauteur dans un triangle:
Dans un triangle, la hauteur issue d'un sommet est la droite passant par ce sommet et perpendiculaire au côté opposé.
La hauteur désigne aussi la longueur du segment d'extrémités le sommet et le point d'intersection de la droite avec le côté opposé.
2) Aire d'un triangle quelconque:
L'aire d'un triangle se calcule en multipliant la longueur d'un côté (appelé base b) par la hauteur relative à ce côté (noté h) divisé par 2.
Exemple:
L'aire du triangle ABC est de 15 cm2.
Vidéo d'application à venir, en attendant:
3) Exemple d'application: calculer une hauteur:
4) Pour aller plus loin: la formule de Pick:
V Aire d'un disque:
1°) Définition : Un disque de centre O et de rayon r est l'ensemble des points dont la distance avec le point O est inférieure ou égale à r.
2) Propriété: L'aire d'un disque de rayon r est :
Exemple:
L'aire d'un disque de rayon 5 cm est :
Exemples d'application à venir, en attendant:
3) Petit exercice supplémentaire:
4) Figures composées: Parfois, pour calculer l'aire d'une figure, il est possible de déplacer ou de compléter des morceaux de cette figure pour obtenir une figure dont on connait l'aire. Cette remarque sera utile pour calculer l'aire d'une figure composée de plusieurs figures dont on connait l'aire.
Exemple: déterminer l'aire de la figure colorée en orange:
Comments